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A new tool for filtering information in complex systems
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We introduce a novel technique to filter out complex data-sets by extracting a subgraph of rep-
resentative links. Such a filtering can be tuned up to any desired level by controlling the genus of
the resulting graph. We show that this technique is especially suitable for correlation based graphs
giving filtered graphs which preserve the hierarchical organization of the minimum spanning tree
but containing a larger amount of information in their internal structure. In particular in the case
of planar filtered graphs (genus equal to 0) triangular loops and 4 element cliques are formed. The
application of this filtering procedure to 100 stocks in the USA equity markets shows that such loops
and cliques have important and significant relations with the market structure and properties.

PACS numbers: 89.75.-k, 05.45.Tp, 02.10.Ox, 89.65.Gh

I. INTRODUCTION

Several complex systems have been recently investi-
gated from the perspective of the (weighted) networks
that are linking the different elements comprising them
[1, 2, 3, 4]. Indeed, complex systems are in general made
of several interacting elements and it is rather natural to
associate to each element a node and to each interaction
a link yielding to a graph. Examples include food
webs [5], scientific citations [6], social networks [7, 8],
communication networks [9], sexual contacts among
individuals [10], company links in a stock portfolio [11],
the Internet [12] and the World Wide Web [13]. The
properties of such graphs have been studied with the aim
of catching basic features of the investigated systems
[14, 15, 16]. However, the complexity of the system is in
general reflected in the associated graph which results
in an intricate interweaved structure. There is therefore
a general need to find methods which are able to single
out the key information by filtering such a complex
graph into a simpler relevant subgraph. Such a filtering
is especially essential for correlation-based graphs where,
in the absence of any filtering procedure, all links among
elements are present.
In this paper we introduce a new filtering procedure
which extracts a representative sub graph with a con-
trolled complexity and maximal information content
out of the graph describing the system. To illustrate
the method we present a concrete example dealing
with 100 stocks belonging to a USA equity portfolio.
In the modeling of equity portfolios a natural starting
point is the investigation of cross-correlation among
time series of returns of stock pairs. The correlation
provides a similarity measure among the behavior of
different elements in the system. It was shown by one of
the authors that a powerful method to investigate the
hierarchical organization in financial systems consists in
the extraction of a minimal set of relevant interactions
associated with the strongest correlations belonging to
the Minimum Spanning Tree (MST) [11]. However, the

reduction to a minimal skeleton of links is necessarily
very drastic in filtering correlation based networks
loosing therefore valuable information. The necessity
of a less drastic filtering procedure has been already
raised in the literature. For example, an extension from
trees to more general graphs generated by selecting
the most correlated links has been proposed in Refs.
[17]. However, with the method discussed in Refs.
[17] is highly improbable to obtain a filtered network
connecting all elements via some path by retaining a
number of links of the same order of the number of
elements.
The method that we present in this paper is based
on the key-idea that graphs with different degrees of
complexity can be constructed by iteratively linking the
most strongly connected nodes under the constraint of
generating graphs that can be embedded on a surface
of a given genus g [18]. The genus is a topologically
invariant property of a surface defined as the largest
number of non-isotopic simple closed curves that can
be drawn on the surface without separating it, i.e. the
number of handles in the surface. We prove that such
graphs have the same hierarchical organization described
by the MST but contain a larger amount of information
which increases with the genus. We show that, with
respect to the MST, the major relative improvement of
the information stored in the graph is realized for the
planar case when the genus g = k assumes the vaue
k = 0.

II. THE FILTERING PROCEDURE

Construction algorithm. Let us first illustrate the
method and the associated algorithm to filter significant
information out of a given complex system composed
by n elements where a similarity measure S between
pairs of elements is defined, e.g. the weight of links in
the original network or the correlation coefficient matrix
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of the system. An ordered list Sord of pair of nodes
can be constructed by arranging them in a descending
order accordingly with the value of the similarity sij

between element i and element j. Let us first consider
the construction algorithm for the MST: following the
ordered list Sord starting from the couple of elements

with larger similarity one adds an edge between element
i and element j if and only if the graph obtained after

the edge insertion is still a forest or it is a tree. A forest
is a disconnected graph in which any two elements are
connected by at most one path, i.e. a disconnected
ensemble of trees. With this procedure the graph
obtained after all links of Sord are considered is the
MST. In fact when the last link is included in the graph
the forest reduces to a tree.
In direct analogy with this construction of the MST, we
construct graphs by connecting elements with largest
similarity under the topological constraint of fixed genus
g = k. The construction algorithm for such graphs is:
following the ordered list Sord starting from the couple of
elements with larger similarity one adds an edge between

element i and element j if and only if the resulting graph
can still be embedded on a surface of genus g ≤ k after

such edge insertion. This generates simple, undirected,
connected graphs embedded on a surface of genus g = k.
In the next section we demonstrate that these graphs
are organized accordingly with the same hierarchical
structure of the MST and that they possess relevant
additional information associated with the structure of
loops and cliques making them natural extensions of the
MST.
A special case is when g = 0 and the resulting graph
is planar [19], i.e. it can be embedded on the sphere.
This graph is the first extension of the MST and we
name it Planar Maximally Filtered Graph (PMFG). An
implementation of the algorithm providing the PMFG
written in Mathematica is accessible as supplementary
information [20]. A basic difference of the PMFG with
respect to the MST is the number of links which is
n − 1 in the MST and 3 (n − 2) in the PMFG. On the
other hand, in general, the number of links in a graph
G with a fixed genus g = k is at most 3(n − 2 + 2k).
Therefore, in most practical cases, when k ∼ O(1) and
n ≫ 1, the relative increase in the number of links that
might be included in the graph by increasing its genus
is very small. It follows that the PMFG assumes a
special status among all the graphs constructed with
the introduced algorithm. Indeed, it is the simplest
and the one providing the most significant additional
information with respect to the MST. For this reason we
will deserve a special attention to it.

Hierarchical organization. Let us now prove the
following statement: At any step of construction of the

MST and graph G of genus g = k if two elements are
connected via at least one path in one of the considered

graphs then they are connected also in the other one. To
this end we must recall the concept of bridge: a link be-

tween two elements is a bridge whenever the elements
are disconnected via any paths in its absence. It follows
from the definition of MST that all links in the MST are
bridges. On the other hand, for graphs with a fixed genus
we have the following important property: if a bridge is
inserted between two previously unconnected regions of
a graph G, characterized by the genus g = k, then the
genus of the graph obtained after the insertion is still k.
This property is straightforwardly proved as a corollary
of the Miller theorem [21] by noting that the addition of a
bridge to a graph leaves unchanged the biconnected com-
ponents of the graph. The above property implies that
if the construction algorithm of G selects a link which is
a bridge for the graph at that step of construction, then
the link is always added to the graph.
We now prove the above statement by induction. In the
following we indicate as MSTm and Gm the graphs con-
structed by using the similarity measure up to the m−th
row of Sord. For the first two steps of construction the
statement is true: MST2 and G2 graphs are always equal.
Now suppose the statement is true at the step m of con-
struction, i.e. for Gm and MSTm. For the step m+1
only four cases are possible:

(i) the new link, connecting the vertices i and j, is a
bridge for the MSTm+1. By the definition of bridge this
implies that the vertices i and j are not connected via
any path in MSTm. Therefore, by inductive hypothesis,
the vertices i and j are not connected via any path also
in Gm and then the new link is a bridge for Gm+1 too.
In this case both graphs will include the considered link
and then the statement is true at the step m + 1.

(ii) the link is a bridge for Gm+1. By using the same
reasoning as in (i) this implies that the same link must
also be a bridge for the MSTm+1 due to the inductive
hypothesis and both graphs will include the considered
link and then the statement is true at the step m + 1.

In the remaining two cases we assume the condition
that the link between the vertices i and j is not a bridge
for both MSTm+1 and Gm+1. This is a condition that
can be used without loss of generality because if the link
is not a bridge for MSTm+1 (or Gm+1) then one always
concludes that the link is also not a bridge for Gm+1 (or
MSTm+1) by following the same reasoning of case (i).

(iii) The link is not a bridge for both MSTm+1 and
Gm+1 and the genus condition g ≤ k fails. In this case
the link is not included to any of both graphs and the
statement is again true at the step m + 1.

(iv) The link under investigation is not a bridge for
both MSTm+1 and Gm+1 and the genus condition g ≤ k
is satisfied. In this case Gm+1 includes the link and
MSTm+1 does not. However due to the fact that the
link added to Gm is not a bridge the connectivity be-
tween pairs of elements in MSTm+1 and in Gm+1 rests
unchanged in both MSTm and Gm and the statement is
also verified in this last case.

The statement is therefore true. This proved state-
ment has an important implication: the fact that the
MST is formed only by bridges implies that the MST is
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FIG. 1: Planar Maximally Filtered Graph obtained from the fully connected graph associated with the correlation coefficient
matrix of 100 most capitalized stocks traded in the USA equity markets during the time period from 1995 to 1998. Cross
correlation is computed by using daily returns of stocks. Stocks are indicated with their tick symbols. For information about
a specific tick symbol see additional material [20]. The graph is topologically planar and it can be drawn on the plane without
edge-crossings. The thicker lines are belonging to the associated minimum spanning tree. It should be noted that link lengths
are not drawn by taking into account the value of the similarity measure between vertices.

always contained in any graph G of genus g = k and, as
a specific case, in the PMFG. Moreover, this statement
shows even a more important fact: with the construction
algorithm presented above the formation of connected
clusters of nodes in Gm coincides with the formation
of the same clusters in the MSTm. In other words the
hierarchical structure associated to graphs G coincides
with the one of the MST. It is worth noting that the
construction algorithm and the associated network

properties also hold true in the more general case of
weighted networks and non fully-connected networks.
In other words the algorithm is general and in the case
of a non-connected graph the filtered graph G of genus
g = k will also be a non-connected graph whereas the
equivalent of MST will not be a tree but a forest.

III. AN EMPIRICAL APPLICATION

PMFG for 100 US stocks. In the previous section
we have introduced a general method of constructing

graphs of defined genus g = k by using a similarity
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measure. In the following we constraint ourselves to
the case g = 0, i.e. to the PMFG and we present an
example concerning the filtering of a graph obtained
with a correlation based procedure. Specifically, we
consider pair correlation between daily returns of a set
of 100 stocks traded in the New York equity markets in
the time period between 1/1995 and 12/1998 [23]. In
this case the measure of similarity S is given by the cor-
relation coefficient ρi j between stocks. The PMFG for
this system is shown in Fig. 1. In the figure the various
elements are connected through links with thicker lines
indicating links belonging to both the MST and the
PMFG. By a comparison between the PMFG and the
MST several new details emerge with the most striking
difference being that the PMFG allows the existence
of loops and cliques. A clique of r elements (r-clique)
is a complete subgraph that links all r elements. Only
cliques of 3 and 4 elements are allowed in the PMFG.
Indeed, topological constraints (Kuratowski’s theorem
[19]) do not allow cliques with a number of elements
larger than 4 in a planar graph. Larger cliques can only
be present in graphs with genus k > 0. The larger the
value of k the larger is the number of elements (r) of

the maximal allowed clique (specifically r ≤
7+

√
1+48k
2

[22]). It is worth noting that the construction algorithm
and the topological constraints on the PMFG force each
element to participate to at least a clique of 3 elements.
In other words, the PMFG is a topological triangulation
of the sphere. In the PMFG we counted 292 = 3n − 8
cliques of 3 elements out of the possible

(

n

3

)

= 161, 700.
The number of cliques of 4 elements is 97 = n − 3. This
number is much smaller than the number of possible
cliques of 4 elements present in the fully connected
graph which are

(

n

4

)

∼= 3.92 · 106. The complete list of
cliques with 3 and 4 elements present in the PMFG are
accessible as supplementary material [20]. Interestingly,
these numbers of 3- and 4- elements cliques coincide with
the numbers of such cliques attainable when a graph is
made by a set of tetrahedra (4-cliques) packed together
by sharing a triangular face. The fact that we observe
such numbers of cliques can be qualitatively explained.
Consider 3 elements of a correlation based network, say
A, B and C. If A is strongly correlated to B and B is
strongly correlated to C then it should also be detected a
strong correlation between A and C which makes highly
probable the formation of a triangular clique. Now, if
one of these 3 elements is strongly correlated with a 4th
one, say D, then also the other two are likely to have
a strong correlation with D generating in this way a
4-clique: a tetrahedron. Given the topological constraint
of planarity, the next most correlated element can only
be connected to maximum 3 of the 4 elements of such
tetrahedron. The connection of a new element to three
elements of the 4-clique generates another 4-clique which
is a new tetrahedron sharing a face with the previous
one. By following this reasoning, we expect therefore
that the basic structures in the resulting graph are
the 4-cliques which during the formation of the PMFG

TABLE I: Strongest correlated intra-sector 4-cliques

Sec. num Stock 1 Stock 2 Stock 3 Stock 4 < ρ > < y >

E 5 ARC CHV MOB XON 0.628 0.335
B 4 BCC CHA IP WY 0.592 0.334
F 6 AXP BAC JPM MER 0.589 0.334
T 8 CSCO INTC MSFT SUNW 0.537 0.335
H 2 BAX BMY JNJ MRK 0.465 0.339
C 2 AVP CL KO PG 0.462 0.337
S 3 AIT BEL GTE T 0.422 0.354
U 1 AEP ETR SO UCM 0.398 0.343

clusterize together locally at similar correlation values
and then connect to each other by following the MST as
skeleton structure. Therefore, if such 4 elements cliques
are the ‘building blocks’ of the PMFG, then there must
be strong relations between their properties and the ones
of the system of 100 stocks from which they have been
generated. These links are explored in the following
section.

Financial market properties and 4-cliques

structure. Let us first classify each stock accordingly
with the economic sector following the classification of
the Forbes Magazine. An analysis on all the 4-cliques
in the PMFG reveals a high degree of homogeneity with
respect to the economic sectors. Indeed, we observe that
31 of the 97 cliques are composed by stocks belonging to
the same economic sector; 22 are composed by 3 stocks
belonging to the same sector; 37 have 2 stocks from the
same sector and only 7 have stocks all from different
sectors.
In Table I we list the 8 cliques with the largest mean
correlation < ρ > among stocks for each economic sector
having at least one clique of four elements. We label
the economic sectors as Energy (E), Basic Materials
(B), Financial (F), Technology (T), Healthcare (H),
Consumer non cyclical (C), Services (S) and Utilities
(U) . The total number of intra-sector cliques for each
sector is given in the second column of the table. It
should be noticed that < ρ > among stocks is different
for different sectors. For example the clique with the
largest mean correlation is a clique of the Energy sector
which has < ρ >= 0.628. Whereas the clique of the
sector Utilities, has the smallest mean correlation with
< ρ >= 0.398. To better understand the structure of
such cliques it is interesting to quantify how much the
correlation among the stocks is spread within the clique.
In analogy to Ref. [24] we compute the quantity < y >
inside a clique as the mean value of the disparity measure

y(i) =
∑

j 6=i,j∈clique

[

ρi j

si

]2

over the clique, where i is a

generic element of the clique and si =
∑

j 6=i,j∈clique

ρi j is

the strength of the element i. This definition is mean-
ingful if ρi j ≥ 0 as in the case considered. The value
of the disparity is expected close to 1/3 for 4-cliques
characterized by links with comparable values of the
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TABLE II: 4-cliques belonging to the Technology sector

Stock 1 Stock 2 Stock 3 Stock 4 < ρ > < y >

CSCO INTC MSFT SUNW 0.537 0.335
CSCO IBM INTC MSFT 0.534 0.335
CSCO INTC SUNW TXN 0.519 0.335
CSCO HWP INTC TXN 0.503 0.336
CSCO IBM INTC ORCL 0.475 0.336
HWP INTC NSM TXN 0.471 0.339
CSCO HRS SUNW TXN 0.435 0.338
CSCO INTC ORCL UIS 0.380 0.354

similarity measure. An inspection of the last column of
Table I shows that most of the cliques have a disparity
measure very close to 1/3. Exceptions are the cliques
of the sectors Services and Utilities that have a slightly
smaller homogeneity in the pair correlation between
stocks belonging to the cliques.

In Table II we present all the 8 cliques of 4 elements
observed for stocks belonging to the Technology sector.
Note that also inside a single sector the level of cor-
relation of the selected cliques may significantly vary.
In fact it ranges from < ρ >= 0.380 to < ρ >= 0.537
showing that the PMFG is able to select cliques at
different levels of correlation. The selection among all
the possible cliques present in the fully connected graph
is rather severe, in fact for the Technology sector we
have 17 elements and therefore the number of cliques of
4 elements all belonging to this sector which are present
in the fully connected graph is 2380. In other words only
8 of the possible 2380 cliques of 4 elements of the fully
connected graph are selected by the PMFG.
Table III shows the 7 cliques with all the 4 components
belonging to different economic sectors. Economic
sectors which are not present in Table I are indicated as
follows: CO for Conglomerates, TR for Transportation,
CC for Consumer cyclical and CG for Capital goods.
In this case, the mean disparity < y > deviates from
1/3 more than previously observed in Table I and II
indicating a certain degree of disparity in these cliques.
These cliques might provide a bridging region between
different sectors in the PMFG. This interpretation is
supported by the fact that in these cliques some of
the most connected stocks are present. In fact General
Electric (GE) is present in all the cliques whereas the
American International Group (AIG) is present in 5 of
them.
The analyzed correlation structure has a certain degree

of statistical uncertainty due to the finite length of
time series. The stability of the filtered graphs with
respect to such statistical uncertainty has been analyzed
by generating surrogated data series using the discrete
Karhunen-Loève expansion [25]. The random data
series are multivariate Gaussian sets computed starting
from a given correlation matrix. For any simulated
realization the correlation matrix has been calculated.
The computed matrices become closer and closer to the
reference matrix by increasing the number of records

FIG. 2: Analysis of stability of the MST and PMFG with
respect to the statistical uncertainty present in the estima-
tion of the correlation matrix as a function of the number of
records of the multivariate time series. By assuming as refer-
ence matrix the empirical correlation matrix of the system we
perform 4 sets of 20 realizations each one of surrogated mul-
tivariate time series. Each set is characterized by a different
number of records set as follows: 1000, 4000, 16000 and 64000
records. For each one of the simulated realizations both the
MST and PMFG have been constructed. The percent (1−P )
of the number of links of the simulated graphs non-matching
with the links of the MST and PMFG of real data is shown
as a function of the number of records of the surrogated time
series in a log-log plot. The error bar indicates one standard
deviation of 1 − P computed for each set.

TABLE III: Inter-sector 4-cliques connecting 4 different sec-
tors
Stock 1 Stock 2 Stock 3 Stock 4 < ρ > < y >

BAC (F) BMY (H) GE (CO) KO (C) 0.483 0.336
BAC (F) BMY (H) GE (CO) DIS (S) 0.435 0.337
AIG (F) GE (CO) NSC(TR) WMT (S) 0.423 0.339
AIG (F) GE (CO) NSC(TR) VO (C) 0.400 0.340
AIG (F) GE (CO) FDX (TR) VO (C) 0.374 0.345
AIG (F) BDK (CC) DAL (TR) GE (CO) 0.360 0.346
AIG (F) CEN (T) GD (CG) GE (CO) 0.340 0.351

of the simulated time series. We consider as reference
matrix the empirical correlation matrix associated to
the system. For fixed values of the number of records
of time series, 20 realizations are simulated and for
each of them both the MST and the PMFG have been
determined. In Fig. 2 the percent of non-matching edges
in the simulated and in the real data graphs is plotted
as a function of the number of records of the simulated
time series in a log-log scale. Fig. 2 shows that the MST
is marginally more stable than the PMFG. Fig. 2 also
suggests a power law dependence of the stability of the
MST and PMFG with respect to the number of data in
the multivariate time series. The significant increase of
information gained by the PMFG is therefore fully bal-
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ancing the marginal decrease of stability for any number
of records of the multivariate time series. This is another
reason suggesting that the PMFG and the similar graphs
characterized by a low value of the genus are the best
compromise allowing to consider a graph richer than the
MST but characterized by a similar degree of stability
with respect to the statistical uncertainty unavoidably
associated with graphs modeling complex systems.

IV. CONCLUSIONS

In summary we have shown that it is possible to de-
termine a family of graphs having the same hierarchical
properties of the MST but comprising a larger number
of links and allowing closed loops. This family of graphs
is controlled by the value of the genus g = k of each
graph. The amount of filtered information with respect
to the one present in the MST increases by increasing
the genus. We discussed that a substantial step in the
amount of additional filtered information is achieved
already in the case for genus k = 0 which gives the
PMFG. A correlation-based investigation of a financial
portfolio shows that the method is pretty efficient in
filtering relevant information about the clustering of the
system and its hierarchical structure both on the whole

system and within each cluster. The example presented
is representative of a large class of correlation based
clustering investigations. For this example, the stability
of MST and PMFG with respect to the statistical
uncertainty due to the finite length of time series has
been investigated suggesting a power law dependence
of the stability with respect to the number of records
in time series. The stability of MST turned out to be
slightly higher than the one of PMFG. The proposed
filtering procedure can be applied to a large number
of real and correlation based networks when a hierar-
chical filtering of the similarity measure matrix is needed.
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